+1 1 0
Published 3 years ago by meizu with 0 Comments

Maximize High Current PCB for Motor Controls

If you want to control currents for electric drives and power materials with intelligent electronics, you have to master the balancing act in between power and also microelectronics. This write-up defines various variants of a distinct and diverse high present PCB technology that are suitable for currents approximately 1,000 A. At the heart of this modern technology are ingrained copper bars that extend from the surface to contact SMDs and also other power parts.

  • moko technology

  • Maximize High Current PCB for Motor Controls

    If you want to control currents for electric drives and power materials with intelligent electronics, you have to master the balancing act in between power and also microelectronics. This write-up defines various variants of a distinct and diverse high present PCB technology that are suitable for currents approximately 1,000 A. At the heart of this modern technology are ingrained copper bars that extend from the surface to contact SMDs and also other power parts.

    To close the space between high-current conductors on the one hand and also digital elements on the various other, a variety of cables, installing materials, and also interposers are normally called for, particularly if SMDs are offered. The aim is to incorporate busbars in printed circuit boards to save building and construction volume and setting up the effort for systems and to combine the drive and supply currents along with electronic controls

    There are a variety of motherboard technologies that are made for power applications. These include multilayers with enhanced copper layer densities of as much as 400 micrometers, which can be fixed higher layers. Furthermore, several methods are provided that count on a careful boost in the copper cross-section, such as the iceberg method, the wire laid strategy, and the partial embedding of thick copper laminates.

    Drive technology: Maximize high present PCB for electric motor controls. Three PCB modern technologies for the high-current motherboard are compared in this write-up: Dickschicht, Iceberg, as well as HSMtec. PCB geography and PCB layout influence the current-carrying ability and heat dissipation of the power semiconductors.

    Appropriate technologies are offered for combining the tons circuit and also the great conductor for reasoning signals on an FR4 circuit card. You conserve area and also prevent the standard link technology with different boards, which boosts the reliability of the motor control. The PCB programmer can maximize the current-carrying ability and warmth dissipation of the power semiconductors according to his job.

    From the perspective of the published circuit card, the requirements of the drive electronic devices can be summed up in 5 factors: 1) high integration density, 2) reliability of the digital assembly, 3) fast warmth dissipation, 4) high currents combined with control electronic devices and also 5) reduced system prices, e.g. by switching to SMD elements, fewer components or setting up procedures.

    A clever service is to incorporate the power section and also the control electronics, i.e. the lots circuits as well as the control logic, as opposed to on two motherboards on just one circuit card. Nevertheless, this requires big conductor cross-sections as well as big insulation ranges for the high-current conductors as well as, at the same time, great conductor structures for the control on identical board. This removes expensive plug connections, cords, as well as busbars, as well as assembly steps as well as threats that restrict integrity. The PCB specialist KSG has three technologies for this: thick copper, iceberg, and HSMtec technology. All three procedures make use of the conventional base product FR4.

    Safe contact with high current PCB All of these technologies have something in common: There is normally not an adequate cross-section between the layers of the high present PCB board and also the links for surface-mounted elements or screw connections. The vias type a traffic jam for the currents of the desired size. And also the press-in plugs, screws, as well as clamps additionally do not ensure trusted contact with the layers. Just the tidy soldering of connections creates a continuous connection from the parts to all layers. Here, nonetheless, the higher the complete copper density, the riskier is the solder penetration.

    On the other hand, no matter the style, the high-current circuit board calls the parts and connections with the maximum conductor cross-section (Number 2 listed below). By doing this, SM as well as THT parts can be combined with bound power semiconductors, press-in gets in touch with, and also screw connections without a bottleneck in the present course. At the same time, the busbar works as a warm sink. The elements remain in direct contact with this thermal mass and are therefore ideally cooled.

    Design, manufacturing, and processing of MOKO PCB Assembly

    Contrasted to conventional busbars known from electric design, independently designed copper parts are made use of for the high-current motherboard. The form and placement of the copper parts can be openly defined. This gives the design designer the flexibility to position the parts as well as links as if a small module with optimized thermal and also electric functions is produced.

 

Join the Discussion

  • Auto Tier
  • All
  • 1
  • 2
  • 3
Post Comment

Here are some other snaps you may like...